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Protein gene prediction methods aim to identify the coding regions of genes. Techni-
cally, these methods can be categorized as ab initio, homology-based and evidence-
based approaches. Ab initio approaches use statistical models and algorithms to detect 
sequence patterns such as codon usage, open reading frames and splice sites that are 
typical of protein-coding genes. Homology-based approaches use sequence similarity 
with known genes of other species. Evidence-based methods use experimental data 
such as RNA-Seq data, ESTs or full-length cDNAs, and reconstruct gene structures by 
mapping the experimental sequences to the genome to determine exon-intron bounda-
ries, transcription start and end sites, and splice variants. In practice, these methods are 
interdependent, and state-of-the-art genome annotation relies on software that ana-
lyzes these data synchronously, or on pipelines that combine the approaches in differ-
ent orders and use different software for each of the steps. 

 
Evidence-based approaches of protein-
coding gene prediction 

It is assumed that evidence-based approaches 
provide the most reliable gene structures. How-
ever, transcript data are notoriously noisy and 
contain biological noise (incorrectly spliced and 
partially processed transcripts, incomplete 

transcripts, contamination with all possible rem-
nants of transcription and mRNA decay) and 
computational noise (sequencing errors, repeats 
and all possible other sequencing artifacts). In 
addition, mapping this data to the genome as-
semblies generates further noise due to inaccu-
rate identification of splice sites. Most im-
portantly, evidence-based data is never 

T E C H N O ET

 
Figure 1: Gene structure with exons and introns from 5’ to 3’. Small punctuated boxes represent introns removed during splicing. 
CDS features and non-coding exons are represented by large, dark-grey boxes and medium-sized boxes, respectively. UTR re-
gions can consist of spliced and non-spliced exons.  
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complete due to differential expression of genes 
and the limited ability to obtain transcript data 
from all organs and tissues. An increase in se-
quenced transcript data will increase the com-
pleteness of transcripts, but will also increase 
the level of detected biological noise. The crea-
tion of annotations from short read data takes 
place in two steps: First, the transcript reads are 
mapped to the genome using software such as 
TopHat, GSNAP, STAR or HISAT and then the 
mapped reads are combined into potential 
genes/transcripts using tools such as Scallop, 
Cufflinks or StringTie. The mapping of full-length 
transcripts is usually done with BBmap, Spaln2, 
exonerate or GMAP. 

Homology-based protein-coding gene 
prediction 

While there are over a hundred tools for short-
read alignment, there are only a few tools for 
protein-to-genome alignment, which forms the 
basis for homology-based gene reconstruction. 
Protein-to-genome alignment is computation-
ally intensive because differences in query pro-
tein and target genome lengths must be ac-
counted for (e.g., the homologs might have 
shorter or longer protein surface loop regions, so 

the length of the translated target does not 
match the length of the protein homolog), the 
target genome must be translated in all reading 
frames (introns have random lengths, so only a 
third of them are divisible by three), and splice 
sites must be modeled. Tools such as Scipio and 
GeneWise use BLAT and BLAST, respectively, to 
identify gene regions and then combine the hits 
into gene structures and refine exon boundaries 
and transcription start and end. Tools such as Ex-
onerate, ProSplign, Spaln2 and miniprot align 
proteins to the genome sequence and refine 
exon-intron boundaries, including frameshift 
mutations and sequencing errors. GeMoMa also 
requires gene structure files of the query pro-
teins as input. 

Ab initio protein-coding gene predic-
tion 

Genes that are not present in the available RNA-
Seq datasets and have no significant homology 
to known proteins can only be predicted by ab in-
itio methods. Tools such as AUGUSTUS, 
Genscan, GeneID, GlimmerHMM, GeneMark 
and SNAP use hidden Markov models for intrin-
sic features of protein-coding genes, such as co-
don usage, GC content and sequence motifs such 

 
Figure 2: Gene prediction approaches. 
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as promoters, start codons and splice sites, 
which have been trained using different sets of 
known protein sequences. However, since ab in-
itio methods rely solely on computational pre-
dictions, they can miss genes with unusual struc-
tures and usually have a high rate of false posi-
tives. Most of the current tools use additional 
data from RNA-Seq and protein homologs to fil-
ter and evaluate potential gene structure signals. 

Prediction of protein-coding genes in 
combinatorial approaches 

There are several pipelines that attempt to uti-
lize the advantages of all three approaches. The 
MAKER pipeline generates gene predictions 
from all approaches in parallel and finally selects 
the best fitting gene model for each gene region 
using EVidenceModeler. Ab initio software such 
as AUGUSTUS is not trained for the specific ge-
nome in the MAKER pipeline, but available RNA-
Seq data is integrated into the gene prediction 
process of AUGUSTUS. It is recommended to run 
the pipeline iteratively several times. The 
BRAKER pipeline streamlines the entire AU-
GUSTUS training and prediction process. In a 
first step, RNA-Seq data and protein homologs 
are used to identify gene regions and guide ab in-
itio gene prediction with GeneMark. The results 
of GeneMark are then used to train AUGUSTUS. 
Finally, all RNA-Seq data, protein homologs and 
GeneMark predictions are integrated into a final 
AUGUSTUS gene prediction run. Funannotate 
can be seen as a combination of MAKER and 
BRAKER. It uses the mapped transcript and pro-
tein evidence together with the available RNA-
Seq data to train AUGUSTUS, SNAP and Glim-
merHMM. All data is fitted into EVidenceMod-
eler and the final models are filtered by length, 
gap-bridging and transposable elements. 

mendle-analytics identification of pro-
tein-coding genes 

With mendle-analytics, we combine all ap-
proaches in a new pipeline. Taxon-specific pro-
tein sequences are collected from multiple 
sources, including GOENOMICS’ database of ge-
nome annotations of representative species. 
These sequences are mapped to the assemblies 
using newly developed software optimized for 
resolving non-canonical and fuzzy splice sites, 

transcript start and end, gene fragments on mul-
tiple contigs, all types of sequencing errors and 
mutations, and challenges due to multiple and 
overlapping signals from (often tandem) gene 
copies in the target genome assembly. UTR re-
gions are added to the reconstructed genes by 
alignment with transcriptome assemblies. The 
expanded genes are used for thorough training, 
including training of the UTR regions, of a spe-
cies-specific parameter set for AUGUSTUS (=> 
species profile). RNA-Seq data, Isoseq data and 
transcriptome assemblies are prepared using 
custom scripts as hints for AUGUSTUS gene pre-
diction. An AUGUSTUS gene prediction is gener-
ated based on the new species profile using the 
expanded genes and transcript data as hints. Fi-
nally, the homology-based gene predictions, the 
Isoseq data and transcript assemblies and the 
AUGUSTUS gene prediction are merged and di-
vided into sets for protein-coding and non-cod-
ing genes as well as (potential) pseudogenes. 

 


